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A theoretical and experimental study on the recrystallization and grain growth processes
on AISI 316 stainless steel is here reported. Experimental data are analyzed according to a
mathematical model based on statistical assumptions able to describe simultaneously
recrystallization and grain growth in metals. Taking into account the classical constitutive
equations of the Taylor’s theory, the model adopts two parameters: the dislocation density
and the initial number of nuclei. The predictions of the model are in good agreement with
experimental results. As cross check of the model predictions, the independent parameter
“dislocation density” is found to properly correlate to the mechanical properties of the
steel, to X-ray diffraction measurements and to transmission electron microscopy
measurements. A comparison with an analogue study on AISI 304 stainless steel is also
reported, enhancing the effect of molybdenum in inhibiting recrystallization and grain
growth. C© 2002 Kluwer Academic Publishers

1. Introduction
It is well known that the mechanical properties of
austenitic stainless steels are strongly affected by mi-
crostructural features (such as grain size and δ-ferrite
content) and chemical composition variations (which
produce solid-solution hardening by both substitutional
and interstitial solid solution). There have been recent
industrial developments both from the point of view of
composition variations [1] and grain size [2] in order
to exploit the effect of these variables to improve the
mechanical properties of steel. It is then evident how
both phenomena, recrystallization and grain growth,
are relevant to the mechanical properties of steel, thus
suggesting the necessity of mathematical models able
to predict the microstructural evolution after thermo-
mechanical cycles.

Although a significant amount of metallurgical re-
search has already been performed in this field [3],
there is still a lack of specific information on the rela-
tionships between the processing variables and material
parameters characteristic of the microstructural evolu-
tion of steels. Then, the objective of the research re-
ported here is to approach the transformations of stain-
less steels during thermal treatments following cold
rolling, through the development and application of a
mathematical model, able in general to describe the pri-
mary recrystallization and grain growth in metals. The
model offers significant improvements from the origi-
nal approach [4] and will be here applied to the study
of these phenomena in an AISI 316 austenitic stain-
less steel. The model reported here could constitute the
basis of an integrated approach that can be applied to

better define the transformation cycles and optimise the
final properties of steel.

2. Outline of the statistical model
The driving force of primary recrystallization in met-
als is mainly related to the reduction of the deformation
energy (dislocations) introduced by cold working. Heat
treatment activates the movement of dislocations and
subgrain boundaries allowing the release of the defor-
mation energy and thus restoring a “dislocation free”
microstructure. Under further heat treatment, grain
growth activated by boundary energy reduction is the
dominant process. There have been several attempts to
simulate primary recrystallization (e.g., [5]) or grain
growth after primary recrystallization (e.g., [6]). Al-
though there is a large number of existing models, they
are not sophisticated enough to deal with the simultane-
ous and concurrent recrystallization and grain growth
phenomena. In the study reported here, a mathemat-
ical model that describes simultaneously the primary
recrystallization and grain growth phenomena is ap-
plied. In this approach, recrystallization nuclei are con-
sidered pre-existing and homogeneously distributed in
the deformed microstructure. This assumption agrees
with the classical theory of nucleation which, in the
case of a “phase transformation” deformed matrix-
recrystallized matrix, predicts a critical radius of the
order of 10–30 nm, smaller than subgrains typically al-
ready present in a deformed metal. This approach is
only qualitatively comparable with the Avrami model,
which is valid for isothermal conditions and has a more
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heuristic character: in this framework it corresponds to
the case in which the nucleation rate is zero [7]. The
statistical model, based on the assumptions of super-
position of average grain curvatures of homogeneous
surroundings and of a random array of the grains, leads
to the following form of the grain growth rate equation
[8, 9]:
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To describe the recrystallization process integrated with
the grain growth, it is necessary to propose an extended
growth equation that enables to contemporarily and
continuously analyse the evolution of free nuclei in the
matrix passing through partially impinged grains up to
full contact. For recrystallization a nucleus must have
the following characteristics [3]:

• It must be more perfect than its neighbours; that
is, it must contain fewer dislocations and thereby
a lower strain energy.

• The boundaries of the subgrain must be mobile by
virtue of sufficient lattice misorientation between
the subgrain and its neighbours. Sufficient misori-
entation might be about 15◦, referred to a common
axis of rotation.

• It must be large enough so that the additional in-
terfacial energy that must be supplied for growth
is less than the volume free energy released when
a strain-free subgrain replaces strained cells.

In our approach recrystallization nuclei (sub-grains)
are considered pre-existing in the deformed microstruc-
ture and characterised by their size distribution. More-
over, the grains are assumed to be all activated from the
beginning and freely growing in the deformed matrix
until they get in contact to each other. This process is
characterised by a gradual transition from a deforma-
tion gradient activated growth, to a proper grain growth
process activated by only boundary energy reduction.

The final equation for recrystallization and grain
growth can therefore be written as:

dRi

dt
= m

[(
Gb2

3
�ρ − 2γ

Ri

) i∗−1∑
j=1

p j

+ γ

nc∑
j=i∗

p j

(
1

R j
− 1

Ri

)]
(2)

where G is the shear modulus of the material, b
is the Burger vector, ρ is the dislocation density,
�ρ = ρd − ρr is the difference between the dislocation
densities in the deformed and in the recrystallized mate-
rial. In Equation 2 it is assumed that the grain boundary
mobility and the surface energy of the freely growing
grains in the deformed matrix are the same of those
of grains in contact; i∗ is the minimum class index of
grains in contact with grains “i”.

The main innovations in the model reported in this
paper with respect to our previous approach [4], are in
the calculation of the “i∗” index and in the reduction
of the free calculation parameters. In particular, differ-
ently from our previous approach, in which a unique
mean influence volume Vi = 1−FV

N (where FV is the re-
crystallized volume fraction and N the initial number
of nuclei) was considered for all the classes, the crite-
rion for identifying the critical class i∗, is here obtained
by defining an interaction volume for each class calcu-
lated as a difference between an influence volume and
the grain volume. The influence volume is here assumed
proportional to the grain volume. Therefore, the final
expression for the interaction volume is:
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where FV is the recrystallized volume fraction. In this
approach, accordingly to Equation 3, the greater is the
radius Ri , the smaller is the interaction volume V int

i
(and thus the higher is its interaction probability). Fur-
thermore, for FV = 1 it follows that V int

i = 0, so that all
the grains are in full contact.

Furthermore, in order to reduce the number of free
parameters, the following constitutive equation of plas-
tic deformation, linking the deformation ε, the dislo-
cation density ρ, the Burger vector b and the nuclei
diameter L , has been introduced:

ε = ρbL (4)

Equation 4 allows to calculate the initial recrystallized
volume fraction Finitial

V (ρ, N ) = 4
3π N ( ε

2ρb )3 as a func-
tion of N and ρ, assumed as the only free parameters in
the calculation, differently from our previous approach
[4] in which Finitial

V was a third free parameter.

3. Materials and experimental procedure
The chemical composition of the AISI 316 steel studied
in this paper is shown in Table I. Samples of the steel
were cold rolled down to different thickness with reduc-
tion rates of 20%, 40%, 60%, 80%, 90% and then an-
nealed in laboratory at T = 1100◦C for different times
(up to 8 min). The thermal profiles (heating and soak-
ing) were measured and interpolated by a polynomial
fitting. After electrochemical etching in a solution con-
taining HNO3 and HCl, samples were analysed for grain
size determination through automatic image analyser.
As an example, some representative micrographs are re-
ported in Figs 1–3 relatively to the 20%, 60% and 90%
deformed and annealed samples. Micro-hardness mea-
surements were performed on the samples and related
to the recrystallized volume fraction. The dislocation
density ρ used as a fitting parameter in the statistical

TABLE I Chemical composition of the AISI 316 steel used in this
research (mass %)

C Mn Ni Cr Mo Cu Co P

AISI 316 0.018 0.90 11.10 17.40 2.10 0.22 0.11 0.026
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Figure 1 20% deformed 316 stainless steel annealed at 1100◦C.

Figure 2 60% deformed 316 stainless steel annealed at 1100◦C.

Figure 3 90% deformed 316 stainless steel annealed at 1100◦C.

model was related to tensile stresses and to FWHM
X-ray measurements.

4. Results and discussion
4.1. Data elaboration
After grain size determination by automatic image anal-
ysis, experimental data have been transformed in 3-D
according to the Saltykov model [10] and fitted by the
statistical recrystallization model. The measured heat-
ing profiles were inserted in the microstructural model
to take into account the temperature dependence of
boundary mobility.

Although it is common knowledge that the enthalpy
(energy) of activation and especially the preexponential
factor of grain boundary mobility don’t usually corre-
late well with diffusion data, as a first approximation
the mobility was calculated according to the Stokes-

Einstein relationship:

m = D

KBT
= D0

KBT
e− �E

KBT (5)

where D = diffusion coefficient, K B = Boltzman
constant, �E = activation energy of the process,
T = temperature. It is thus possible to take into account
the effect of the annealing treatment on the material, by
introducing in Equation 10 the function T = T (t) from
the measured heating profile. As a first approximation,
in the following D was chosen to be proportional to
the diffusion coefficient of Fe-γ in Fe-γ [11] and this
frame D0 was considered as a free input parameter.

The other input parameters of the model, the ini-
tial number of nuclei N and the dislocation density
ρ, were considered as dependent on the cold reduction
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rate and independent on the heating temperature profile,
assumption based on the experimental evidence that re-
covery effects in an austenitic structure are negligible.
From a sensitivity study of the model parameters, it
came out that the shape of the initial grain size dis-
tribution is not very effective on the kinetics whereas
variation of the number of nuclei N and of the disloca-
tion density ρ are much more effective, thus suggest-
ing a scheme for the numerical simulation according to
Fig. 4.

Figure 4 Simulation procedure.

Figure 5 Experimental mean radii and variation coefficients k of samples of cold rolled AISI 316 (A: 20%, B: 40%, C: 60%, D: 80% and E: 90%)
and annealed at different times in comparison with results from the statistical model.

4.2. Prediction of the mean radius
The experimental mean radii of samples of cold rolled
AISI 316 steel at different reduction grades (20%, 40%,
60%, 80% and 90%) and annealed at different times are
shown in Fig. 5 together with the values predicted by the
statistical model. These results show a good agreement
between the prediction of the model and experimental
data. The values of the best fitting parameters used for
the simulations reported in Fig. 5 are shown in Table II.

Although a smaller mean radius with a higher cold
reduction should be expected, the same mean radius
values have been obtained for all reduction grades. It

TABLE I I Values of the best fitting parameters used for the simula-
tions of the recrystallization and grain growth phenomena in the AISI
316 steel

Cold reduction (%) ρ (cm−2) N (cm−3)

20 6.0 × 1010 2.0 × 108

40 1.1 × 1011 5.0 × 108

60 1.5 × 1011 7.0 × 108

80 2.0 × 1011 1.0 × 109

90 2.2 × 1011 1.0 × 109
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Figure 6 Influence of the different heating profiles on the grain size.

must be noted that, due to the different thickness of the
samples (which come from the same hot rolled coil),
the higher is the cold reduction the higher is the subse-
quent heating rate. Therefore, opposite effects are pro-
duced by cold reduction and by the heating rate during
grain growth. In order to better analyse the effects of
the heating profile on the mean radius during recrystal-
lization and grain growth a specific set of simulations
has been performed on three AISI 316 strips with dif-
ferent initial thickness cold rolled with the same reduc-
tion grade (90%). The results of the simulations (using
the microstructural parameters ρ = 2.2 × 1011 cm−2,
N = 1.1 × 109 cm−3) are shown in Fig. 6 From these
results it is evident that the different heating profiles,
due to the thickness effect, influence significantly the
grain size showing in particular the relevance of the
“time” spent by the sample at the highest temperatures.

The numbers of nuclei and dislocations densities
used in the calculations are shown in Fig. 7 as a func-
tion of the cold reduction grade. These results not only
reflect the expected behaviour of the recrystallization
and grain growth process but also represent the con-
nection between the microstructure characteristics of
the deformed material and the processing parameters.
Fig. 7 is also of practical importance since, once the
model has been set for a given steel, it is possible to ob-
tain from it the parameters to simulate the behaviour of
the same material subjected to different cold reduction
grades.

In order to validate the dislocation density values
used for the calculation, a direct dislocation density
measure has been performed on the 20% deformed

Figure 7 Calculated numbers of nuclei and dislocations densities as a function of the cold reduction grade.

sample by means of Transmission Electron Microscope
(TEM) according to [10]. The results are shown in
Fig. 8, giving a ρ value in the sample lying in the range
4 × 1010 cm−2 < ρ < 7 × 1010 cm−2 to be compared
with the 6 × 1010 cm−2 value used in the calculation.

In order to indirectly validate the dislocation density
data inserted in the model as an input parameter for the
higher cold deformations, the validity of the Taylor de-
pendency between ρ and the yield strength Rp02, which
has been found valid in polycrystalline materials [12],
has been tested:

Rp02 ∝ 〈ρ〉n with n = 0.5 (6)

In Equation 6, ρ is obtained by best fitting of the ex-
perimental mean radius with the statistical model and
the Rp02 is obtained by tensile stress test. The results of
this correlation are shown in Fig. 9 where a good agree-
ment (n = 0.54 in comparison to the theoretical n = 0.5)
between simulation results and Equation 6 results are
obtained. This result is an indirect proof that the disloca-
tions density ρ already identified by the model through
the best fitting of the mean radius and the variation coef-
ficient values are congruent with the experimental data
Rp02.

As a further validation of the dislocation density val-
ues used in the calculation, X-ray diffraction measure-
ments have been performed on the {220 planes of the de-
formed samples using a MoKα source. Fig. 10 shows the
effects of the deformation on the line shape: the higher
is the deformation (and thus the dislocation density),
the higher is the broadening of the diffraction peak.
The validity of the following Debye-Scherrer relation
usually found valid for single phase materials [13] has
been tested:

ρ ∝ 1

Dn
(7a)

D = 0.9 · λ

cos θ · �(2ϑ)
(7b)

The results of such validation are shown in Fig. 11. The
higher value of the exponent n obtained (n = 3.4 in
comparison to the theoretical n = 2.0) can be explained
in terms of martensite content. In fact, Fig. 12 shows
the presence of magnetic martensite (α′) determining
at high grades of deformation the presence of a higher
dislocation density with respect to that of the single
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Figure 8 TEM micrograph for the 20% deformed steel.

Figure 9 Validation of the Taylor dependency between ρ and the yield
strength Rp02. The continuous line represents the best fit according to
Equation 6; R2 = 0.98.

Figure 10 Effect of the deformation on the line shape of {220 X-ray
diffraction peak.

Figure 11 Validation of the Debye-Scherrer relation (Equation 7). The
continuous line represents the best fit according ρ ∝ 1/Dn with n = 3.4
(R2 = 0.98). The dot line represents the fit according to Equation 7.

Figure 12 Magnetic phase (α′-martensite) as a function of the cold
rolling grade in the AISI 316 stainless steel.

phase steel, that can lead to an increase the exponent n
in Equation 7.

A comparison of the parameters used for the sim-
ulation of the AISI 316 steel with those used for the
validation of the model on AISI 304 [14] is shown in
Table III where m0 is the proportional coefficient in the
mobility calculation, hold constant in all the simula-
tions. Table III shows that similar ρ and N values were
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T ABL E I I I Input parameters for recrystallization and grain growth calculations in AISI 304 and AISI 316 stainless steels

AISI 304 AISI 316

Cold reduction (%) ρ (cm−2) N (cm−3) m0 ρ (cm−2) N (cm−3) m0

20 5.0 × 1010 2.0 × 108 6.0 × 1010 2.0 × 108

40 1.2 × 1011 3.0 × 108 1.1 × 1011 5.0 × 108

60 1.5 × 1011 8.0 × 108 1.0 × 10−5 1.5 × 1011 7.0 × 108 3.0 × 10−6

80 2.0 × 1011 9.0 × 109 2.0 × 1011 1.0 × 109

90 2.1 × 1011 1.2 × 109 2.2 × 1011 1.0 × 109

used in the calculation for both steels: A lower grain
boundary mobility is found in the AISI 316 steel, due
to the presence of Mo.

4.3. Prediction of the recrystallized
volume fraction

Due to the general difficulty in determining the re-
crystallized fraction by automatic image analysis in

Figure 13 Comparison of the values of the recrystallized volume fraction obtained from hardness measurements and those obtained from the statistical
model for the different cold reduction grades 316 (A: 20%, B: 40%, C: 60%, D: 80% and E: 90%).

partially recrystallized samples, a model has been de-
veloped relating the recrystallized fraction to the steel
hardness [4]. This model, based on the Taylor’s theory
and on the assumption of a poor influence of recov-
ery phenomena in austenitic stainless steels, lead to the
following equation linking the recrystallized volume
fraction at the annealing time t FV (t) to the hardness
δ(t) measured at the same annealing time:
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T ABL E IV Mean radius of samples with different reduction rates at
times tR corresponding to a complete recrystallization

Cold reduction (%) Mean radius (µm)

20% 9.5
40% 7.8
60% 6.0
80% 5.5
90% 5.0

FV (t) = δ2(t) − δ2
A

δ2
D − δ2

A

(8)

where δD and δA represent the hardness in the deformed
and in the completely annealed steel respectively.

The comparison of the values of the recrystallized
volume fraction obtained from hardness measurements
and those obtained from the statistical model is shown
in Fig. 13 for the five different cold reduction grades.
The good agreement obtained between indirect experi-
mental data and model results confirms also in this case
the validity of the modelling approach. In fact, the pre-
diction of the evolution of the volume fraction by the
recrystallization model (Fig. 13) should be compared
with experimental data (microstructure evolution) on
volume fraction. However, at the present such measures
are rather difficult to be performed with reasonable ac-
curacy and reproducibility by metallographic methods
because of the insufficient definition of the obtainable
microstructure images. Then, Equation 8 provides a
valid alternative to more direct experimental validation
of the statistical model.

From the comparison between results reported in
Figs 5 and 13 it can be observed that at times corre-
sponding to a complete recrystallization, the lower is
the reduction rate the greater is the mean radius. This
conclusion is in agreement with the fact that at higher
cold reductions higher dislocation densities and thus
higher numbers of nuclei are present in the steel with a
consequent lower mean radius. These results are sum-
marised in Table IV.

5. Conclusions
Results from a recrystallization and grain growth model
based on statistical assumptions have been here dis-

cussed in comparison with measurements performed
on an AISI 316 stainless steel. In particular, samples of
various reduction rates of cold rolled steel were an-
nealed at 1100◦C at different times. The grain size
of the samples was determined via automatic image
analysis and corrected to 3-D values according to the
Saltykov model. The predictions of the model (mean
radius, variation coefficient and recrystallized volume
fraction) are in good agreement with experimental re-
sults. As cross check of the model prediction the inde-
pendent parameter “dislocation density” was found to
properly correlate to the mechanical properties of the
steel and to X-ray diffraction measurements. The lower
grain boundary mobility found in AISI 316 with respect
to that of the AISI 304 steel is attributed to the presence
of Mo.
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